Name:	,
Class/Lab Period:	

Nuclear Equations Worksheet

Identify the missing atomic nuclei or radiation particles in the following nuclear equations:

1. Alpha decay of radium-226, the most abundant isotope of radium

$$\frac{226}{88}$$
Ra \rightarrow $+$ $\frac{4}{2}$ He

2. Radioactive decay of carbon-14, which is used in radiocarbon dating

3. "Electron capture" by potassium-40, a natural source of radiation in the human body

4. Alpha decay of the artificially produced radioisotope that is used in smoke detectors

$$\rightarrow \frac{237}{93} \text{Np} + \frac{4}{2} \text{He} + \frac{0}{9} \gamma$$

5. Formation of radioactive carbon-14 in the upper atmosphere by reaction with cosmic rays

6. Beta decay of iodine-131, which is used to treat thyroid cancer

7. "Positron" emission by fluorine-18, which is used in PET scans to study brain function

$$7. \qquad {}^{18}_{9}F \rightarrow \boxed{ + {}^{0}_{+1}e}$$

8. Radioactive decay of thorium-232 used in incandescent gas "lantern mantles"

$$\sqrt[6]{\cdot} \quad \frac{^{232}}{^{90}} Th \quad \rightarrow \frac{^{228}}{^{88}} Ra \quad + \quad \boxed{}$$

9. "Fission reaction" of uranium-235 in a nuclear reactor

$$\int_{-\frac{235}{92}} U + \frac{1}{0} n \rightarrow \int_{-\frac{92}{36}} Kr + 3\frac{1}{0} n + \frac{\int_{-\frac{1}{2}}^{\frac{1}{2}} \int_{-\frac{1}{2}}^{\frac{1}{2}} \int_{-\frac{1}{2}}^{\frac{1}{2}}$$

10. "Fusion reaction" of hydrogen isotopes—the principal source of energy production in the Sun

$$1/$$
 $\frac{3}{1}$ $\frac{1}{1}$ $\frac{3}{1}$ $\frac{1}{1}$ $\frac{1}{1}$

11. Alpha decay of the most abundant source of natural background radiation